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Abstract

A computational technique for computing relevant energy levels and corresponding wave functions of an electron con-
fined by a 3D quantum dot embedded in a semiconductor matrix are studied. Assuming an energy and position dependent
electron effective mass approximation this problem is governed by a rational eigenvalue problem. We discuss the applica-
tion of iterative projection method of Arnoldi and Jacobi–Davidson type. Projected problems of small dimension are
solved efficiently by safeguarded iteration.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Semiconductor nanostructures have attracted tremendous attention in the past few years because of their
unique physical properties and their potential for applications in micro- and optoelectronic devices. In such
nanostructures, the free carriers are confined to a small region of space by potential barriers, and if the size
of this region is less than the electron wavelength, the electronic states become quantized at discrete energy
levels. The ultimate limit of low dimensional structures is the quantum dot, in which the carriers are confined
in all three directions.

In this paper, we consider the problem to determine a few relevant energy levels and corresponding wave
functions of a three-dimensional quantum dot. Assuming the effective one-band Hamiltonian approximation
H, the position and energy dependent quasi-particle effective mass approximation, the finite hard wall confine-
ment potential, and the Ben Daniel–Duke boundary condition, this problem is modeled by the Schrödinger
equation
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HðmjÞu ¼ ku ð1:1Þ

where the effective electron mass mj is a rational function mj = fj(k) of the energy level for the quantum dot
(j = q) and the matrix surrounding the quantum dot (j = m).

The nonlinear eigenproblem (1.1) can be solved efficiently by the so called full approximation method
[11–13,22] if the dimension of a discrete version is not too large (for instance, if the dot is rotational sym-
metric and (1.1) can be reduced to a two-dimensional problem). However, in the general three-dimensional
case this method is too costly, since in every iteration step one has to solve a linear eigenproblem of large
dimension.

For sparse linear eigenvalue problems iterative projection methods (e.g., Lanczos, Arnoldi, and Jacobi–
Davidson method) are known to be very efficient. Here, approximations to the wanted eigenvalues and eigen-
vectors are obtained from projections of the eigenproblem of small dimension which are expanded in the
course of the algorithm. In [7,14,16,24] this approach was generalized to polynomial eigenproblems and in
[2,18,20,21] to the general nonlinear case.

In two recent papers Hwang, Lin, Wang and Wang [8,9] suggested a numerical method for simulating a
three-dimensional pyramidal quantum dot heterostructure. Discretizing the Schrödinger equation (1.1) by a
finite volume method one obtains a rational eigenproblem. Multiplying each of the equations by its com-
mon denominator one ends up with a polynomial eigenvalue problem of degree 5, which is solved by a var-
iant of the Jacobi–Davidson method. This approach has two disadvantages: the Schrödinger equation and
its rational discretization are symmetric, but this property is not preserved by the polynomial eigenproblem,
which makes its numerical solution more involved. Moreover, the wanted smallest positive eigenvalues
occur somewhere in the middle of the spectrum of the polynomial problem, which causes some additional
numerical problems.

In this paper, we make use of the symmetry of problem (1.1) to solve it efficiently. Its eigenvalues can be
characterized as minmax values of a Rayleigh functional. This property is inherited by finite element approx-
imations of (1.1), and by projections to small dimensional subspaces which are constructed in iterative projec-
tion methods like the Arnoldi and the Jacobi–Davidson method. Hence, these projected problems can be
solved efficiently by safeguarded iteration.

Our paper is organized as follows. In Section 2, we state the rational eigenvalue problem which models the
electronic behavior of a quantum dot assuming a position and energy dependent quasi-particle effective mass
approximation. We rewrite it in variational form, and derive the minimum–maximum characterization of its
eigenvalues. Section 3 describes the iterative projection methods, and discusses the solution of the projected
rational eigenproblems by safeguarded iteration. Numerical results are given in Section 4 demonstrating
the efficiency of the method. Some concluding remarks are given in Section 5.

2. The governing Schrödinger equation

We consider the problem to compute relevant energy states and corresponding wave functions of a three
dimensional semiconductor quantum dot. Let Xq � R3 be a domain occupied by the quantum dot, which is
embedded in a bounded matrix Xm of different material. A typical example is an InAs pyramidal quantum
dot embedded in a cuboid GaAs matrix.

We consider the one-band envelope-function formalism for electrons and holes in which the effective Ham-
iltonian is given by
bH ¼ � �h2

2
r � 1

mðk; xÞr
� �

þ V ðxÞ ð2:1Þ
where �h is the reduced Planck constant, and $ denotes the spatial gradient.
Assuming non-parabolicity for the electron’s dispersion relation the electron effective mass m(k,x) is con-

stant on the quantum dot and the matrix for every fixed energy level k, and is taken as [1,3]
1

mjðkÞ
:¼ 1

mðk; xÞ

����
x2Xj

¼
P 2

j

�h2

2

kþ Eg;j � V j
þ 1

kþ Eg;j � V j þ Dj

� �
; j 2 fm; qg ð2:2Þ



826 H. Voss / Journal of Computational Physics 217 (2006) 824–833
where the confinement potential V j :¼ V jXj
is piecewise constant, and Pj, Eg, j and Dj are the momentum matrix

element, the band gap, and the spin–orbit splitting in the valence band for the quantum dot (j = q) and the
matrix (j = m), respectively.

To determine the relevant energy states and corresponding wave functions we have to solve the governing
Schrödinger equation
�r � �h2

2mjðkÞ
ru

� �
þ V ðxÞu ¼ ku; x 2 Xq [ Xm. ð2:3Þ
Since the wave function decays outside the quantum dot very rapidly, it is reasonable to assume homogeneous
Dirichlet conditions u = 0 on the outer boundary of Xm, and on the interface between the quantum dot and
the matrix the Ben Daniel–Duke condition [6] holds
1

mq

ou
onq

����
oXq

¼ 1

mm

ou
onm

����
oXm

; x 2 oXq \ oXm. ð2:4Þ
Here nq and nm denote the outward unit normal on the boundary of Xq and Xm, respectively.
Multiplying (2.3) by v 2 H 1

0ðXÞ, X :¼ �Xq [ Xm, and integrating by parts one gets the variational form of the
Schrödinger equation
aðu; v; kÞ :¼ �h2

2mqðkÞ

Z
Xq

ru � rvdxþ �h2

2mmðkÞ

Z
Xm

ru � rvdxþ V q

Z
Xq

uvdxþ V m

Z
Xm

uvdx

¼ k
Z

X
uvdx ¼: kbðu; vÞ for every v 2 H 1

0ðXÞ. ð2:5Þ
For gj � Vj > 0, j 2 {m,q} and every k > 0 the bilinear form a(Æ, Æ;k) is symmetric, bounded, and H 1
0-elliptic,

and b(Æ, Æ) is bilinear, positive definite, bounded, and completely continuous.
Hence, by the Lax–Milgram lemma the variational eigenproblem (2.5) is equivalent to the nonlinear eigen-

value problem
T ðkÞu ¼ 0 ð2:6Þ
where T ðkÞ:H 1
0ðXÞ ! H 1

0ðXÞ, k P 0, is a family of bounded operators. For fixed k P 0 the linear eigenvalue
problem
T ðkÞu ¼ lu ð2:7Þ
has a countable set of eigenvalues l1 P l2 P . . . which satisfy a maxmin characterization
lj ¼ max
dimV¼j

min
u2V ;u 6¼0

hT ðkÞu; ui
hu; ui . ð2:8Þ
Here ÆÆ, Ææ denotes the usual inner product in H 1
0ðXÞ.

Moreover, for
f ðk; uÞ:¼ hT ðkÞu; ui ¼ kbðu; uÞ � aðu; u; kÞ ð2:9Þ

it holds
lim
k!0þ

f ð0; uÞ < 0 < lim
k!1

f ðk; uÞ ¼ 1 for every u 6¼ 0 ð2:10Þ
and
o

ok
f ðk; uÞ > 0 for every u 6¼ 0 and k P 0. ð2:11Þ
Hence, for every u 6¼ 0 the real equation f(k;u) = 0 has a unique solution p(u). This equation therefore defines a
functional p : H 1

0ðXÞ n f0g ! R which is called Rayleigh functional.
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Obviously, if T(k) :¼ kI � A corresponds to a linear eigenvalue problem, then the Rayleigh functional p is
just the well known Rayleigh quotient. It is remarkable that nonlinear eigenproblems satisfying the conditions
(2.8), (2.10) and (2.11) have similar properties as self-adjoint and completely continuous linear eigenproblems.
The nonlinear eigenvalue problem (2.6) has a countable set of eigenvalues which can be characterized as min-
max values of the Rayleigh functional p (cf. [5,23]):

Theorem 2.1.

(i) The Schrödinger equation (2.3) modelling the quantum dot with electron effective mass mj given in (2.2) has
a countable set of eigenvalues
0 < k1 6 k2 6 k3 6 . . .
which all have finite multiplicity, and the only cluster point of which is 1.
(ii) The kth smallest eigenvalue kk can be characterized as
kk ¼ min
dimV¼k

max
u2V ;u 6¼0

pðuÞ ð2:12Þ
(iii) ~k is the kth smallest eigenvalue of (2.3) if and only if l = 0 is the kth largest eigenvalue of the linear

eigenproblem
T ð~kÞu ¼ lu
(iv) The minimum in (2.12) is attained for the invariant subspace of T(kk) corresponding to its kth largest

eigenvalues.

If the Schrödinger equation (2.3) is discretized by a Galerkin method (finite elements, e.g.) one gets a
rational matrix eigenvalue problem
SðkÞx :¼ kMx� 1

mqðkÞ
Aqx� 1

mmðkÞ
Amx� Bx ¼ 0 ð2:13Þ
where
Aj ¼
Z

Xj

r/k � r/‘ dx

 !
k;‘

; j 2 fq;mg

M ¼
Z

X
/k/‘ dx

� �
k;‘

and B ¼ V q

Z
Xq

/k/‘ dxþ V m

Z
Xm

/k/‘ dx

 !
k;‘
and /k denotes a basis of the ansatz space.
Aq, Am and B are symmetric and positive semi-definite, and M is positive definite, and for k P 0 the

matrix
�h2

2mqðkÞ
Aq þ

�h2

2mqðkÞ
Aq
is positive definite. Hence, the eigenvalues of the dicretized problem (2.13) satisfy a minmax principle as well,
and it follows from the minmax characterization (2.12) of the nonlinear Schrödinger equation that the kth
smallest eigenvalues of the discretized problem (2.13) is an upper bound of the corresponding eigenvalue of
problem (2.3).

3. Iterative projection methods

In this section, we consider the problem to compute a few eigenvalues and corresponding eigenvectors at
the lower end of the spectrum of a nonlinear eigenproblem
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SðkÞx ¼ 0 ð3:1Þ
where SðkÞ 2 Rn�n for k > 0 is a family of large and sparse symmetric matrices, such that for every x 2 Rn,
x 6¼ 0 and for every k > 0 it holds
o

ok
xTSðkÞx > 0. ð3:2Þ
Thus, we consider a discretization (2.13) of the Schrödinger equation (2.3) such that its eigenvalues satisfy a
minmax characterization. We stress the fact that we do not assume that S(Æ) corresponds to an orthogonal
projection of (2.7), and its eigenvalues are upper bounds of the corresponding eigenvalues of (2.3).

For linear sparse eigenproblems S(k) = kB � A very efficient methods are iterative projection methods like
the Lanczos, the Arnoldi, and the Jacobi–Davidson method, e.g., where approximations to the wanted eigen-
values and eigenvectors are obtained from projections of the eigenproblem to subspaces of small dimension
which are expanded in the course of the algorithm.

Essentially two types of methods are in use for linear problems: methods which project the problem to a
sequence of Krylov spaces (like the Lanczos or the Arnoldi method), and methods which aim at specific eigen-
pairs like the Jacobi–Davidson method one at a time. Generalizations to nonlinear problems always have to be
of the second type, i.e., the current search space has to be expanded by a direction with high approximation
potential for the eigenvector wanted next.

Let V 2 Rn�k be an (orthonormal) basis of a subspace of Rn, and assume that h is an eigenvalue of the pro-
jected eigenvalue problem
V TSðkÞVy ¼ 0; ð3:3Þ
y 2 Rk is a corresponding eigenvector, and denote by x :¼ Vy the corresponding Ritz vector. Then one step of
inverse iteration with initial guess (h,x), i.e., the direction
v :¼ SðhÞ�1S0ðhÞx; ð3:4Þ
is a suitable expansion of the current search space V, since inverse iteration is known to converge quadratically
to simple eigenvalues, and for symmetric eigenproblems it converges even cubically if the eigenvalue approx-
imation is updated by the Rayleigh functional. Its drawback however is that it is too expensive for large prob-
lems since in every iteration step one has to solve a large linear system S(h)v = S 0(h)x for v where the system
matrix S(h) varies in every iteration step.

In the next two subsections we will consider expansions of the search space V which approximate the
inverse iteration and which do not have this unpleasant property.
3.1. Arnoldi method

The residual inverse iteration introduced by Neumaier [15] suggests the expansion
v ¼ SðrÞ�1SðhÞx; ð3:5Þ
of the search space V (cf. [18,20]). Here r is a fixed parameter close to the wanted eigenvalues.
For a linear eigenproblem S(k) = A � kB this is exactly the Cayley transform with pole r and zero h, and

since (A � rB)�1(A � hB) = I + (r � h)(A � rB)�1B and Krylov spaces are shift-invariant the resulting pro-
jection method expanding V by v is nothing else but the shift-and-invert Arnoldi method.

If the linear system S(r)v = S(h)x is too expensive to solve for v we may choose as new direction
v = K�1S(h)x with K � S(r), and for the linear problem we obtain an inexact Cayley transform or a
preconditioned Arnoldi method. We therefore call the resulting iterative projection method given in Algo-
rithm 1 nonlinear Arnoldi method, although no Krylov space is constructed and no Arnoldi recursion
holds.
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Algorithm 1 Nonlinear Arnoldi method

1: start with an initial pole r and an initial orthonormal basis V, VTV = I

2: determine preconditioner K � S(r), r close to first wanted eigenvalue
3: k = 1
4: while k 6 number of wanted eigenvalues do

5: compute the kth smallest eigenvalue l and corresponding normalized eigenvector y of the projected problem VTS(l)Vy = 0
6: determine Ritz vector u = Vy and residual r = S(l)u
7: if iri < e then

8: accept eigenvalue kk = l, and eigenvector xk = u,
9: choose new pole r and update preconditioner K � S(r) if indicated

10: restart if necessary
11: k = k + 1
12: end if

13: solve Kv = r for v

14: v = v � VVTv, ~v ¼ v=kvk, V ¼ ½V ;~v�
15: reorthogonalize if necessary
16: end while

There are many details that have to be considered when implementing the nonlinear Arnoldi method con-
cerning the choice of the initial basis, when and how to update the preconditioner, and how to restart the
method. A detailed discussion is given in [20]. Of particular importance is the question how to solve the pro-
jected eigenproblem in Step 5: which will be addressed in Section 3.3.

3.2. Jacobi–Davidson method

Arnoldi type methods are quite efficient in solving sparse nonlinear eigenproblems if an accurate precon-
ditioner K � S(r) is at hand. If this is not the case, then the convergence deteriorates considerably. In this sit-
uation Jacobi–Davidson type methods offer an appealing alternative.

A natural generalization of the Jacobi–Davidson method for linear eigenproblems which was already sug-
gested in [16] for polynomial eigenvalue problems and which was studied in [2] and [21] for general nonlinear
eigenproblems is the following one: Suppose that the columns of V � Rn form an orthonormal basis of the
current search space, and let (x,h) be a Ritz pair of (3.1) with respect to V, i.e., VT S(h)Vy = 0, x = Vy. Then
we consider the correction equation
I � pxT

xTp

� �
SðhÞ I � xxT

xTx

� �
z ¼ �r; z ? x ð3:6Þ
where p :¼ S 0(h)x and r :¼ S(h)x.
Eq. (3.6) can be rewritten as S(h)z � ap = �r, where a has to be chosen such that z ^ x. Solving for z we

obtain
z ¼ �xþ aSðhÞ�1p ¼ �xþ aSðhÞ�1S0ðhÞx;

and x = Vy yields that ~z :¼ SðhÞ�1S0ðhÞx 2 span½V ; z�.

Hence, as in the linear case the new search space span [V,z] contains the vector obtained by one step of
inverse iteration with shift h and initial vector x, and again we may expect quadratic or even cubic convergence
of the resulting iterative projection method, if the correction equation (3.6) is solved exactly.

As in the linear case the correction equation does not have to be solved exactly to maintain fast conver-
gence, but usually a few steps of a Krylov solver with an appropriate preconditioner suffice to obtain a good
expansion direction of the search space.

The approximate solution of the correction equation has to be orthogonal to x. If (3.6) is solved by a Kry-
lov solver and the initial approximation is orthogonal to x then all iterates are orthogonal to x as well.

In the correction equation (3.6), the operator S(h) is restricted to map the subspace x^ into itself. Hence, if
K � S(h) is a preconditioner of S(h) then a preconditioner for an iterative solver of (3.6) should be modified
correspondingly to
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eK :¼ I � pxT

xTp

� �
K I � xxT

xTx

� �
.

With left-preconditioning, Eq. (3.6) becomes
eK�1 I � pxT

xTp

� �
SðhÞ I � xxT

xTx

� �
z ¼ �eK�1r; z ? x. ð3:7Þ
It was already demonstrated in [17] for linear problems that taking into account the projectors in the precon-
ditioner, i.e. using eK instead of K in a preconditioned Krylov solver, raises the cost only slightly. In every step
one has to solve one linear system Kw = y, and to initialize the solver requires only one additional solve. The
transfer to (3.7) is straightforward [2].

A template for the nonlinear Jacobi–Davidson method is similar to Algorithm 1. One only has to replace
the solve of system Kv = r in Step 13: by a few steps of a preconditioned Krylov solver for the correction equa-
tion (3.6).

Hwang et al. [9,8] suggested to avoid the iterative solution of the correction equation (3.6) replacing S(h) by
some preconditioner K � S(h)
I � pxT

xTp

� �
K I � xxT

xTx

� �
z ¼ �r; z ? x ð3:8Þ
which yields the approximate solution of (3.6)
z ¼ �K�1r þ sK�1p with s ¼ xTK�1r

xTK�1p
. ð3:9Þ
It is interesting to note that this expansion is a linear combination of the Arnoldi expansion K�1r and an
approximation K�1p of the direction suggested by inverse iteration.

3.3. Safeguarded iteration

A crucial point in iterative methods for general nonlinear eigenvalue problems when approximating more
than one eigenvalue is to inhibit the method to converge to the same eigenvalue repeatedly. For linear eigen-
value problems this is easy to do by using Schur forms or generalized Schur forms for the projected problem
and then locking or purging certain eigenvalues. For nonlinear problems, however, such Schur forms do not
exist and this presents one of the most difficult tasks in achieving good convergence.

For symmetric nonlinear eigenproblems satisfying a minmax characterization (2.12) however, its eigen-
values can be computed safely one after the other. The minimum in (2.12) is attained by the invariant subspace
of S(kk) corresponding to the kth largest eigenvalues, and the maximum by every eigenvector corresponding to
the eigenvalue 0. This suggests the safeguarded iteration for computing the kth smallest eigenvalue which
reads as follows for the projected eigenproblem P(k)y :¼ VTS(k)Vy = 0:

Algorithm 2 Safeguarded iteration

1: Start with an approximation l1 to the kth smallest eigenvalue of P(k)y = 0
2: for ‘ = 1,2, . . .until convergence
3: determine an eigenvector u corresponding to the kth largest eigenvalue of the matrix P(l‘)
4: evaluate l‘+ 1 = p(u), i.e., solve uTP(l‘+ 1)u = 0 for l‘+ 1

5: end for

The safeguarded iteration has the following convergence properties [19]: It converges globally to the small-
est eigenvalue k1. The (local) convergence to simple eigenvalues is quadratic. If P 0(k) is positive definite, and u

in Step 3 of the last algorithm is replaced by an eigenvector of P(l‘)u = l P 0(l‘)u corresponding to the kth
largest eigenvalue, then the convergence is even cubic. Moreover, a variant exists which is globally convergent
also for higher eigenvalues.
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4. Numerical experiments

We consider a pyramidal quantum dot with width 12.4 nm and height 6.2 nm embedded in a cubic matrix
of size 24.8 nm · 24.8 nm · 18.6 nm with the following parameters Pq = 0.8503, gq = 0.42, dq = 0.48, Vq = 0,
Pm = 0.8878, gm = 1.52, dm = 0.34, and Vm = 0.7. This model was already treated by Hwang et al. in [9].

The authors of [9] presented a discretization of problem (2.3) by the finite volume method based on a uni-
form grid which yields a matrix eigenvalue problem (2.13). The occurring matrices Aq, Am and B are symmet-
ric and positive semi-definite, M is the identity, and for k P 0 the matrix
Table
Unifor

Dim.

2475
22,103
186,54
1,532,2
12,419
�h2

2mqðkÞ
Aq þ

�h2

2mqðkÞ
Aq
is positive definite. Hence, the Arnoldi and the Jacobi–Davidson methods have the properties outlined in Sec-
tion 3, and the projected eigenproblems can be solved by safeguarded iteration. Notice however, that the dis-
cretized problem is not obtained by a projection of problem (2.3) to a finite dimensional space, and therefore
the eigenvalues of (2.13) are not guaranteed to be upper bounds of the corresponding eigenvalues of (2.3).

Multiplying each of the equations by its common denominator Hwang et al. transformed (2.13) to a poly-
nomial eigenvalue problem of degree 5 which they solved by the variant of the Jacobi–Davidson method men-
tioned at the end of Section 3.2. This approach has two disadvantages: symmetry properties of the rational
eigenproblem are destroyed, and the eigenvalues of the polynomial problem can not be characterized by a
minmax principle, which makes its numerical solution more involved. Moreover, the wanted smallest positive
eigenvalues occur somewhere in the middle of the spectrum of the polynomial problem, which causes some
additional numerical problems.

We solved the rational eigenproblem (2.13) directly by the nonlinear Arnoldi method [20] (not taking
advantage of the fact that the finite difference stencils are identical for all discretization points in the matrix
and in the quantum dot, respectively) under MATLAB 7.0.4 on an AMD Opteron processor with 4 GByte
RAM and 2.2 GHz. Table 1 contains the approximations to the smallest 5 eigenvalues and the CPU times.

It is evident that there is a significant difference between our calculations and the corresponding results in
[9], despite the fact that the parameters in our calculations and in [9] were identical. This turned out to be
caused by a misprint in [9]. The ground states given there correspond to the parameter Vm = 0.77 (cf. [10]).

The uniform grid does not seem to be appropriate for discretizing (2.5) since the wave functions corre-
sponding to small energy levels are mainly concentrated on the quantum dot and decay rapidly outside,
whereas the volume occupied by the quantum dot is only less than 3% of X.

Using FEMLAB [4] we discretized (2.5) by cubic Lagrangian elements on a tetrahedral grid with 96,640
degrees of freedom such that 43,615 DoFs where located in the quantum dot, 43,897 DoFs in the matrix,
and 9128 DoFs on the interface. Surprisingly enough, the results did not differ very much from the ones that
were obtained with cubic Lagrangian elements on a uniform grid with 98,851 DoFs, 2260 of which were
located in the quantum dot, 95,037 in the matrix, and 1554 on the interface (cf. Table 2).

We solved the rational eigenproblem by the nonlinear Arnoldi method, the Jacobi–Davidson method, and
the variant of Hwang et al. We started the methods with a constant vector on Xq [ Xm which is far away from
an eigenvector, and we terminated the iteration for an eigenvalue, if the residual norm was less than 10�8.
Table 2 contains the approximations to the smallest 5 eigenvalues, the number of iterations to obtain the
approximations, and the CPU times. Notice, that in this case by Theorem 2.1 one gets upper bounds of
1
m finite volume discretization

k1 k2/3 k4 k5 CPU time

0.41195 0.58350 0.67945 0.70478 0.68 s
0.40166 0.57668 0.68418 0.69922 8 s

3 0.39878 0.57477 0.68516 0.69767 151 s
55 0.39804 0.57427 0.68539 0.69727 4018 s

,775 0.39785 0.57415 Overnight



Table 2
Finite element discretization

Dim. k1 k2 k3 k4 k5 CPU time

96,640 0.39779 0.57411 0.57411 0.68547 0.69714
Arnoldi 44 it. 29 it. 29 it. 24 it. 21 it. 189 s
JD 9 it. 7 it. 9 it. 5 it. 6 it. 205 s
Hwang et al. 45 it. 9 it. 5 it. 24 it. 21 it. 227 s

Uniform grid 0.39785 0.57423 0.57423 0.68566 0.69734 182 sec.

Table 3
Finite element discretization

s JD Arnoldi Hwang et al. Precond.

0.1 261.4 1084.1 1212.4 3.4
0.01 132.7 117.1 155.7 71.7
0.001 118.9 61.2 96.0 246.6
0.0001 155.6 46.6 71.1 665.6
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the corresponding eigenvalues of problem (2.3). Hence, the approximations to kj for j = 1,2,3 are definitely
better than the ones obtained by the finite volume method with more than 12 million DoFs.

The second eigenvalue is a double one. None of the methods had problems to compute it, and to deliver a
basis of the eigenspace.

To demonstrate that the Jacobi–Davidson method is more robust than the Arnoldi method with respect to
less accurate preconditioners we solved the rational eigenproblem preconditioning with an incomplete LU fac-
torization with different drop tolerances s. Table 3 contains the CPU times for determining the smallest 5
eigenvalues not considering the time that is needed to compute the LU factorization, which is displayed sep-
arately in the last column.

5. Conclusions

We discussed iterative projection methods of Arnoldi and Jacobi–Davidson type (including a variant pro-
posed by Hwang et al.) for determining a few electronic states of a three-dimensional quantum dot taking into
account an electron effective mass which depends on the position and on the electron energy level. Taking
advantage of the symmetry of the governing rational eigenproblem it can be solved efficiently by both meth-
ods. If an accurate preconditioner is at hand the Arnoldi method is faster than Jacobi–Davidson type meth-
ods, however, the Jacobi–Davidson method seems to be more robust with respect to coarse preconditioners.
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